Sistemas e Dispositivos de Segurança para Instalações Elétricas

Disjuntores

Premissas

- As condições anormais de operação devem ser limitadas no tempo de duração e na amplitude.
- Os dispositivos de proteção nas instalações elétricas devem desligar o circuito nas condições adversas.
- Os principais dispositivos de proteção e segurança são os fusíveis, os disjuntores e os relés térmicos.

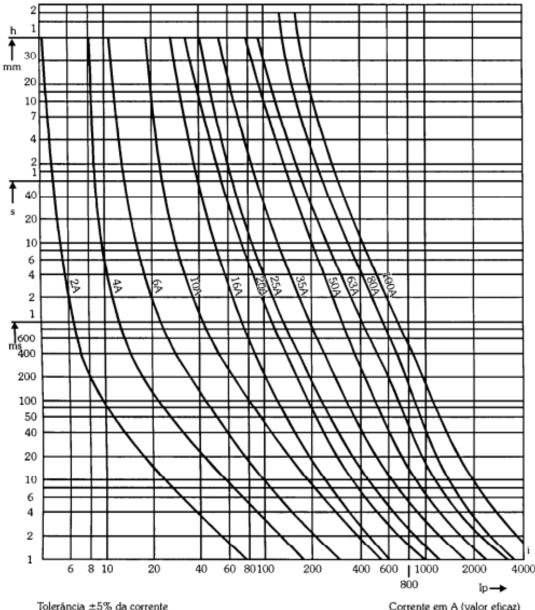
Introdução

NBR 5410/2004 estabelece as prescrições fundamentais destinadas a garantir a segurança de pessoas, animais e bens contra os danos que possam resultar da utilização das instalações elétricas.

Proteção contra Sobrecargas e Correntes de Curto-Circuito

Fusíveis

Fusíveis


Definição

"Dispositivo de proteção que, pela fusão de uma parte dimensionada para tal, interrompe a corrente elétrica quando esta excede um certo valor estabelecido, durante um tempo determinado".

Fusíveis

- 1. São de operação simples e segura.
- 2. São, geralmente, de baixo custo.
- 3. Não permitem efetuar manobras, sendo normalmente usados com chaves.
- 4. São unipolares e, consequentemente, podem causar danos a motores, caso o circuito não disponha de proteção contra falta de fase.
- 5. Não permitem ajuste, o que somente pode ser conseguido com a mudança do tamanho (corrente nominal) ou do tipo do fusível.
- 6. Não permitem rearme do circuito após a sua atuação, devendo ser substituídos.
- 7. Constituem, essencialmente, uma proteção contra correntes de curto-circuito.
- 8. Não são recomendados para a proteção contra sobrecorrentes leves e moderadas.

Fusível

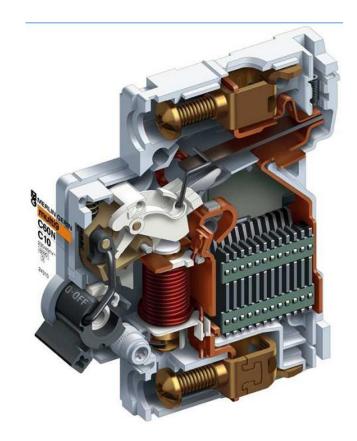

Corrente em A (valor eficaz) Tolerância ±5% da corrente

Figura 9.8 - Curva Característica Tempo x Corrente de um Fusível Diazed (Cortesia: Siemens)

Disjuntor Termomagnético - DTM

Fonte: Weg

Fonte: Merlin Gerin

Disjuntor

Definição

"Equipamento de proteção cuja finalidade é conduzir a corrente de carga sob condições nominais e interromper correntes anormais de sobrecarga e de curto-circuito".

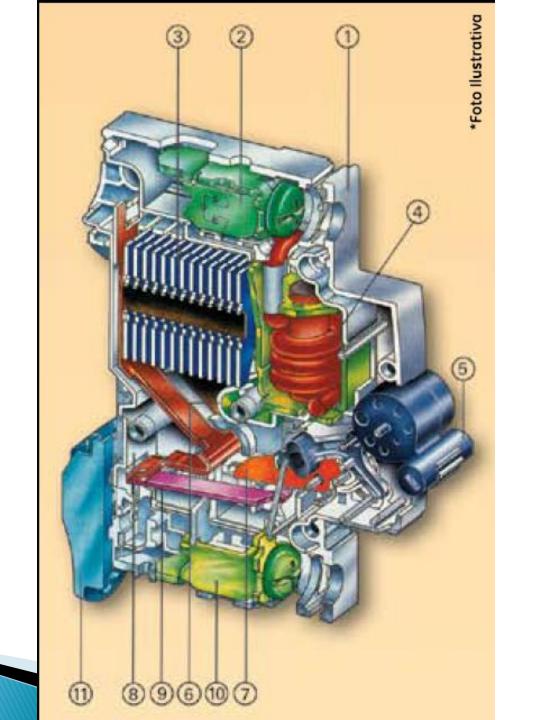
Disjuntores Termomagnéticos

Aplicações:

Manobras

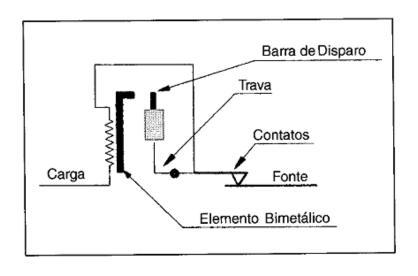
Proteção contra correntes de sobrecarga

Proteção contra curto-circuito

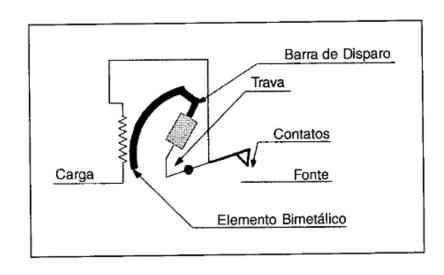

Disjuntores devem SEMPRE ser ligados aos condutores FASE.

Disjuntores Termomagnéticos

- Em resumo, os DTMs cumprem 3 funções básicas:
- Abrir e fechar os circuitos (Manobra)
- 2. Proteger os condutores e equipamentos contra sobrecarga (dispositivo térmico)
- 3. Proteger condutores contra as correntes de curto-circuito (dispositivo magnético).

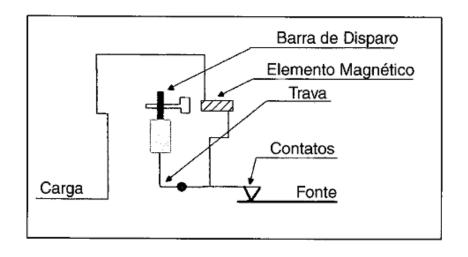

DTMs - Princípio de funcionamento

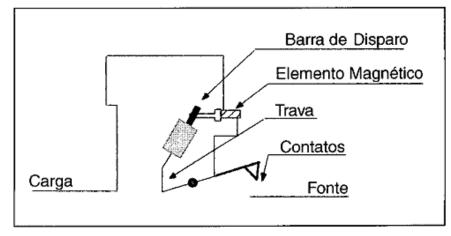
- Disjuntores Termomagnéticos atuam por:
 - Efeito térmico com sobrecarga.
 - Efeito eletromagnético com corrente de curtocircuito.



DTM - Efeito Térmico

Disparador térmico simples





Posição de Disparo

DTM - Efeito Eletromagnético

Disparador magnético

Posição normal

Posição de disparo

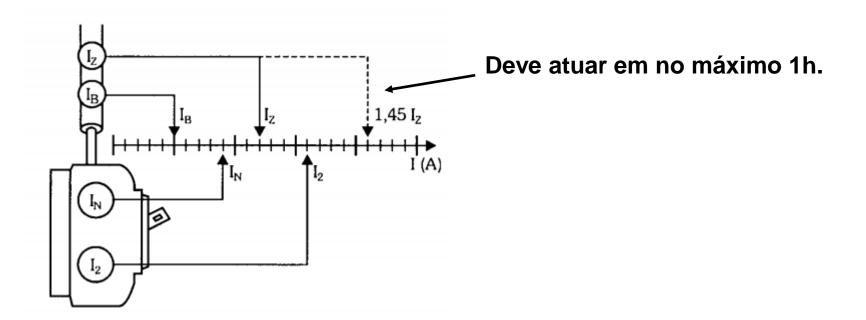
Especificação de Disjuntores

- Os seguinte itens devem ser discriminados:
 - Corrente nominal de operação
 - Capacidade de interrupção
 - Tensão nominal
 - Frequência nominal
 - Tipo (térmico, magnético, termomagnético, ajustável,...)

- A NBR 5410-2004 estabelece condições que devem ser cumpridas para que haja coordenação entre os condutores de um circuito e o dispositivo de proteção.
- O item 5.3.4 da norma diz que a corrente do disjuntor deve interromper a corrente de sobrecarga antes do aquecimento excessivo dos condutores.

O item 5.3.4 estabelece que proteção deve satisfazer as duas inequações:

$$I_B \le I_N \le I_Z$$
 e $I_2 \le 1.45I_Z$

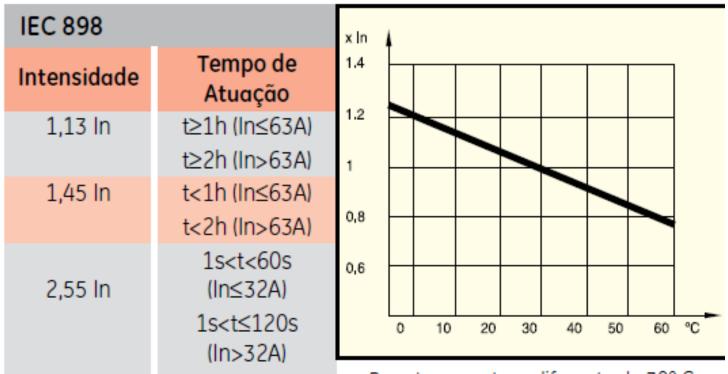

I_B – corrente de projeto

I_N – corrente nominal do disjuntor

I_z – capacidade de condução dos condutores vivos

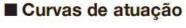
I₂ – corrente convencional de atuação do disjuntor ou fusível.

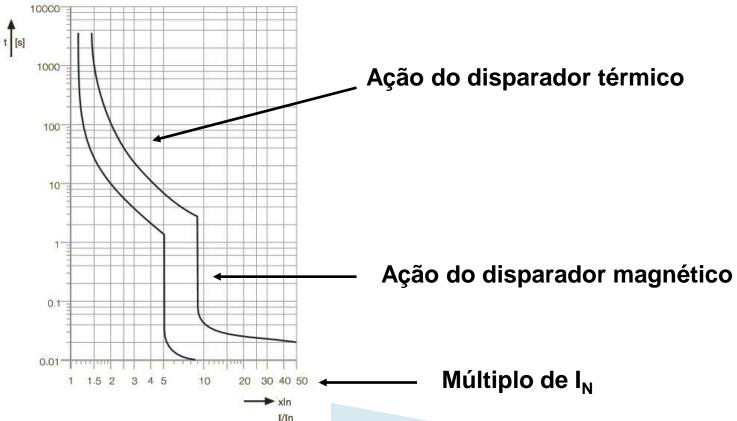
Condição para atuação sob sobrecarga



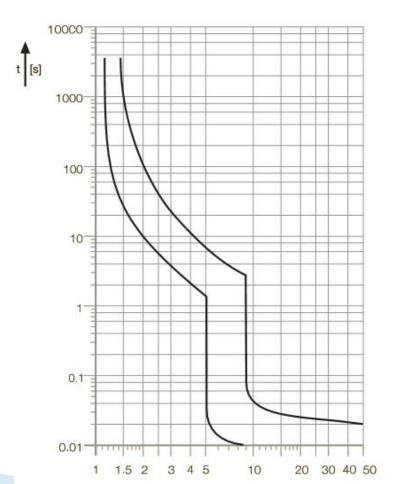
Proteção contra curto-circuito (atuação do magnético)

В	Valor de Atuação	Tempo de Diparo	Aplicação			
В	3 x ln	0.1 < t < 45s (In ≤ 32A) 0.1 < t < 90s (In > 32A)	Cargas resistivas, como: • Aquecedores, Chuveiros elétricos • Fornos elétricos			
	5 x ln	t < 0.1s	• Iluminação incandescente			
С	5 x ln	0.1 < t < 15s (In ≤ 32A) 0.1 < t < 30s (In > 32A)	 Cargas indutivas ou com corrente de partida elevada Iluminação fluorescente 			
	10 x In	t < 0.1s	Pequenos motores			
D	10 x In	0.1 < t < 4s ⁽¹⁾ (In ≤ 32A) 0.1 < t < 8s (In > 32A)	Circuitos com corrente elevada de partida como grandes motores e			
	20 x In	t < 0.1s	transformadores			


(1) If $ln \le 10A$, t < 8s


Proteção contra sobrecarga (atuação do térmico)

Para temperatura diferente de 30° C, aplicar o coeficiente de correção acima.

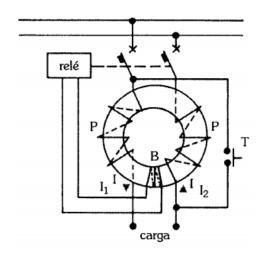

DTM - Curva de atuação

DTM - Curva de atuação

Ex2: Sendo a corrente nominal do disjuntor 50 A, estime o tempo de atuação para uma corrente de carga de 150A e 300A.

Ex1: Dimensionar o disjuntor para um chuveiro: 5400VA, 220V. Dados dos condutores: bitola de 4 mm², capacidade de condução de 32 A.

■ Características elétricas												
Normas de referência		ABNT NBR NM 60898:2004										
Frequência		60 Hz										
Correntes nominais	Unipolares	10	16	20	25	32	40	50	63			
	Bipolares/Tripolares	10	16	20	25	32	40	50	63			
Limiar de atuação magnética		5 a 10 In (curva B)										
Número de pólos					1		2		3			
Capacidade de interrupção (kA) e Tensão de funcionamento (V √) para disjuntor 3kA		127 V√			5,0		-		-			
		2	220 V√		3,0		5,0		5,0			
		380 V√		-			3,0		3,0			


Disjuntores

- 1. Atuam pela ação de disparadores, ou principalmente no caso dos de média e alta tensão, através de relés separados da estrutura principal do disjuntor.
- 2. Apresentam os tipos monopolares e multipolares, e no caso dos últimos, possibilitam uma proteção adequada, evitando a operação monofásica de motores trifásicos, tal como a que pode ocorrer com a queima de um único fusível.
- Permitem melhor margem de escolha e melhor coordenação seletiva com outros dispositivos, pois em muitos tipos permitem o ajuste dos disparadores.
- 4. Podem ser religados após a sua atuação, sem necessidade de substituição.
- Podem ser utilizados como dispositivo de seccionamento e, em alguns casos, como dispositivo de manobra.
- 6. Embora não sejam tão rápidos quanto os fusíveis (principalmente os limitadores) para correntes de curto-circuito, o são para sobrecorrentes leves e moderadas.
- 7. Permitem, em alguns tipos, a operação a distância.
- **8.** São, principalmente os de corrente nominal mais elevada, mais caros que o conjunto fusível contator relé botões de comando.

Dispositivo DR

Princípio de funcionamento

Atuam quando há uma corrente residual (de fuga) circulando na instalação.

Fonte: Mamede

Dispositivos DRs

- Dispositivos a DR podem ser:
 - Interruptores DR
 - Disjuntores de proteção
 - Tomadas com interruptores DR incorporadas
 - Blocos avulsos

Especificação de DRs

- Deve-se observar as características técnicas:
 - Corrente nominal
 - Corrente diferencial residual nominal
 - Tensão nominal
 - Capacidade de interrupção
 - Frequência
 - Número de pólos

DRs e a NBR 5410

- A norma exige DRs em:
 - Tomadas em todo local molhado ou sujeito a lavagem;
 - Tomadas em áreas externas;
 - Tomadas internas que alimentam equipamentos na área externa da instalação;
- Nesta aplicações a NBR 5410 obriga o uso de DRs de alta sensibilidade ($I_f >= 30$ mA).

Resumo sobre utilização das DRs

- Devem ser utilizados para proteção:
 - De pessoas e animais contra contatos acidentais com partes vivas da instalação elétrica;
 - Contra perigos de incêndio devido a faltas à terra;
 - Contra presença de faltas à terra por equipamentos em más condições;
 - Em locais de grande concentração de umidade.

Referências

- Baseado na apresentação disponível em http://www.eletrica.ufpr.br/jean/Eletrotecnica/Material_Didatico/ – acessado em maio de 2012.
- Minidisjuntores Manual da GE.
- Instalações Elétricas Cotrim.